Strategic Interaction in Pharmaceutical Price Regulation and Innovation Biomedical Innovation, The Pharmaceutical Industry And The Role Of Public Institutions

P. Pertile¹ S. Gamba² M. Forster³

20 January 2022

¹University of Verona ²University of Milan ³University of York, University of Bologna P. Pertile, S. Gamba, M. Forster Strategic Interaction & Innovation

Motivation: strategic interaction

- Patents (monopolistic prices) as incentives to R&D investment: static vs. dynamic efficiency
- innovation as a global public good
- do countries free-ride on pharmaceutical pricing?
 - 'countries whose policies restrict the prices pharmaceutical firms can charge for their products were, it was suggested, potentially free-riding on the rewards and incentives for innovation provided by others' (OECD, 2008, p. 21)
 - 'small subgroups in the population can benefit by free riding on the U.S. states willing to support market prices, but the United States as a whole benefits from maintaining market pricing everywhere' (Filson, 2012, p. 112)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

This paper's topic and an ongoing debate

European Union and joint procurement:

- joint procurement of Covid-19 vaccines
- joint procurement of Covid-19 new therapeutics
- > joint procurement was a possibility **before** the pandemic
 - Joint Procurement Agreement (JPA) in April 2014 (specific to vaccines)
 - joint procurement of pharmaceuticals feasible under Directive 2014/24/EC
- Should it go beyond the pandemic?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Motivation: joint procurement

- Expansion of the market size of contracting authority
- expected benefits in terms of reduced prices
- the role of increased bargaining power (Espín et al., 2016)
- other existing experiences: Beneluxa initiative
 - involves Belgium, the Netherlands, Luxemburg and Austria
 - among motivations: 'Improve the payers position in the market by joint (price) negotiations for specific products'

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Aims

- 1. understanding **mechanisms** underlying strategic interaction among regulators
- 2. investigating empirically the relationship between country level characteristics and equilibrium prices
- 3. drawing **policy implications**, especially from the EU perspective

Outline

Introduction

Model

Solution

Empirical analysis

Conclusion

P. Pertile, S. Gamba, M. Forster Strategic Interaction & Innovation

Innovation and patients' benefits

- **Two countries** (A and B) with one regulator in each
- one firm potentially selling in both markets
- marginal willingness to pay for the new drug in country c at the individual level:

$$\mathsf{MWTP}^{c} = \kappa^{c} \delta(I) - b^{c} q^{c}, \ c \in \{A, B\},$$

with:

 q^c: quantity consumed by each of N^c identical patients eligible for the drug in country c

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- κ^{c} : country specific parameter scaling MWTP
- δ(I) (δ_I > 0, δ_{II} < 0): impact on MWTP (effectiveness) of R&D investment, I
- I: level of R&D investment by the firm

The firm

- Sells in market c if p^c exceeds country-specific reservation price, r^c
- Given p^A, p^B, firm chooses investment I to maximize global profit:

$$\Pi = N \left[\mathbf{1}_{p^{A} \ge r^{A}} [n^{A} (p^{A} - m)q^{A} - C^{A}] + \mathbf{1}_{p^{B} \ge r^{B}} [(1 - n^{A})(p^{B} - m)q^{B} - C^{B}] \right] - I$$
(1)

where:

N = N^A + N^B: size of global market (normalized to 1)
 n^A = N^A/N: proportion of global market sales in A
 m: marginal production cost
 C^c: fixed cost to enter the market (see, e.g., Bennato and Valletti (2014))

Regulators

Regulators A and B choose prices to maximise own country welfare:

$$W^{A} = \alpha^{A} CS^{A}(\cdot) + (1 - \alpha^{A})\lambda \Pi(\cdot)$$
$$W^{B} = \alpha^{B} CS^{B}(\cdot) + (1 - \alpha^{B})(1 - \lambda)\Pi(\cdot)$$

where:

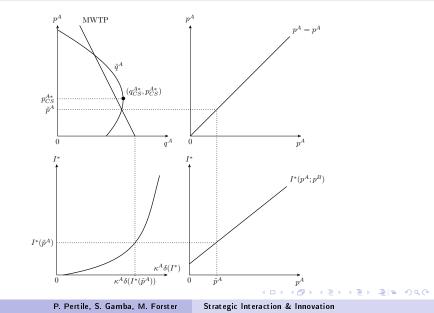
CS^c: consumer surplus in country c
 λ: fraction of global profits earned in country A
 α^c: weight on CS relative to global profits earned in country c
 regulate efficient level of consumption: MWTP(q) = p

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Firm optimal investment

- Timing:
 - 1. Regulators simultaneously set prices p^A and p^B and can commit to them (Grossman and Lai, 2008)
 - 2. the firm decides on the amount of investment, I

Focus: stationary equilibria with adoption in both countries


Regulators' optimal pricing

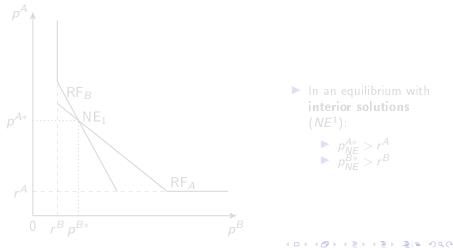
Define, feasible quantity:

$$\hat{q}^A(p^A;p^B;eta):=rac{\kappa^A\delta(I^*(p^A;p^B;eta))-p^A}{b^A}$$

• Quantity consistent with I^* and $MWTP = p^A$

Optimal pricing

Reservation prices

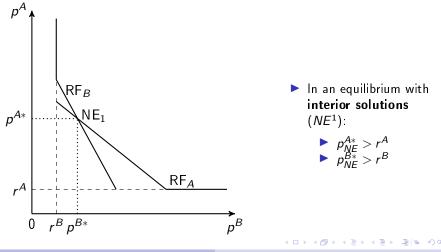

 r^A and r^B jointly defined as minimum value to achieve non negative profits:

$$\begin{cases} \Pi^{A} = n^{A}(r^{A} - m)\hat{q}^{A} - C^{A} = 0, \\ \Pi^{B} = (1 - n^{A})(r^{B} - m)\hat{q}^{B} - C^{B} = 0. \end{cases}$$

reservation prices are decreasing in domestic market share

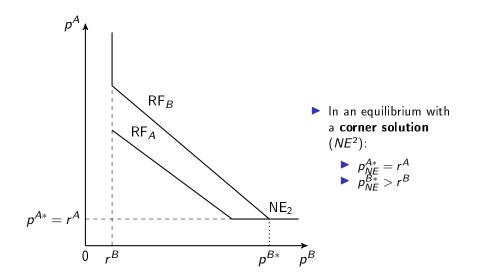
Nash Equilibria with interior solutions

Focus on situations with **prices strategic substitutes** leading to **stable equilibria** where **both countries adopt**



P. Pertile, S. Gamba, M. Forster

Strategic Interaction & Innovation


Nash Equilibria with interior solutions

Focus on situations with **prices strategic substitutes** leading to **stable equilibria** where **both countries adopt**

P. Pertile, S. Gamba, M. Forster Strategic Interaction & Innovation

Nash Equilibria with corner solutions

P. Pertile, S. Gamba, M. Forster

Strategic Interaction & Innovation

< □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■

1. Impact of n^A on equilibrium prices:

- $\frac{\partial r_{NE}^A}{\partial n^A} < 0$ if equilibrium is at a corner
- $\frac{\partial p_{NE}^A}{\partial p^A} > 0$ if equilibrium is interior
- If ∂p^{A*}/∂n^A > 0, an increase in n^A shifts A's reaction f. upwards and B's reaction f. downwards, potentially reaching a threshold above which solution moves from corner to interior
- 3. Implication: eq. prices may be U-shaped in market share

1. Impact of n^A on equilibrium prices:

- $\frac{\partial r_{NE}^A}{\partial n^A} < 0$ if equilibrium is at a corner
- $\frac{\partial p_{NE}^{\alpha}}{\partial p^{A}} > 0$ if equilibrium is interior
- If ∂p^{A*}/∂n^A > 0, an increase in n^A shifts A's reaction f. upwards and B's reaction f. downwards, potentially reaching a threshold above which solution moves from corner to interior
- 3. Implication: eq. prices may be U-shaped in market share

1. Impact of n^A on equilibrium prices:

- $\frac{\partial r_{NE}^A}{\partial n^A} < 0$ if equilibrium is at a corner
- $\frac{\partial P_{NE}^{A}}{\partial n^{A}} > 0$ if equilibrium is interior
- If ∂p^{A*}/∂n^A > 0, an increase in n^A shifts A's reaction f. upwards and B's reaction f. downwards, potentially reaching a threshold above which solution moves from corner to interior
- 3. Implication: eq. prices may be U-shaped in market share

- 1. Impact of n^A on equilibrium prices:
 - $\frac{\partial r_{NE}^A}{\partial n^A} < 0$ if equilibrium is at a corner
 - $\frac{\partial p_{NE}^A}{\partial n^A} > 0$ if equilibrium is interior
- 2. If $\frac{\partial p^{A*}}{\partial n^A} > 0$, an increase in n^A shifts A's reaction f. upwards and B's reaction f. downwards, potentially reaching a **threshold** above which solution moves **from corner to interior**
- 3. Implication: eq. prices may be U-shaped in market share

- 1. Impact of n^A on equilibrium prices:
 - $\frac{\partial r_{NE}^A}{\partial n^A} < 0$ if equilibrium is at a corner
 - $\frac{\partial p_{NE}^A}{\partial n^A} > 0$ if equilibrium is interior
- 2. If $\frac{\partial p^{A*}}{\partial n^A} > 0$, an increase in n^A shifts A's reaction f. upwards and B's reaction f. downwards, potentially reaching a **threshold** above which solution moves **from corner to interior**
- 3. Implication: eq. prices may be U-shaped in market share

Outline

Introduction

Model

Solution

Empirical analysis

Conclusion

P. Pertile, S. Gamba, M. Forster Strategic Interaction & Innovation

Econometric specification

$$\ln[p_{i,c,t}] = \alpha + \mu \frac{N_{i,c,t}}{Ntot_{i,t}} + \nu \left(\frac{N_{i,c,t}}{Ntot_{i,t}}\right)^2 + \delta' \mathbf{Z}_{c,t} + \zeta_i + \varepsilon_{i,c,t},$$

- $P_{i,c,t}$: price of drug *i* in country *c* at time *t*
- $N_{i,c,t}$: prevalence of the disease(s) treated by drug i in country c, at time t
- Ntot_{i,t}: total prevalence of disease(s) treated by drug i at time t in the sample
- $\mathbf{Z}_{c,t}$ includes, for country c at time t:
 - In(GDP per capita), a proxy for WTP (κ^A)
 - In(export of medicinal and pharmaceutical products), a proxy for λ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

- ζ_i : product fixed effect

Data

Sources:

- prices: IMS Pricing Insights database
- other: (Worlds Bank, UN)
- Period: quarters 2007-2017 (but shorter for some countries)
- Countries: 25 members of OECD in 2007
- Drugs: 83 on-patent cancer drugs (ATC class: L01)

Why cancer drugs:

- largest therapeutic class in terms of sales value (similar to statins; OECD, 2008); rapidly increasing
- in recent years, key innovations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Descriptive statistics

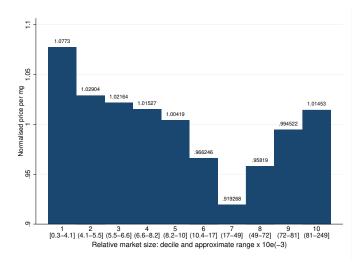


Figure: Standardized price by decile of relative mkt size

P. Pertile, S. Gamba, M. Forster Strategic Interaction & Innovation

Results

	(1)	(2)
Relative market size	-1.410***	-1.790***
	(0.464)	(0.494)
Square of relative market size	9.422**	11.962***
	(3.965)	(4.241)
Natural logarithm of GDP per capita	0.165***	0.157***
	(0.019)	(0.019)
Natural logarithm of pharmaceutical exports	0.019***	0.022***
	(0.002)	(0.002)
Number of years since launch date		-0.024***
		(0.004)
Number of countries	24	24
Number of observations	20155	20155
Lind & Mehlum U-test (<i>p-value</i>)	0.013**	0.004***
Extreme point	0.075	0.075

Models include product-level fixed effects.

Standard errors (in parentheses) are clustered at the product level.

* p < 0.10, ** p < 0.05, *** p < 0.01

Table: Results of the main empirical analysis

P. Pertile, S. Gamba, M. Forster	Strategic Interaction & Innovation
----------------------------------	------------------------------------

Conclusion

- our theory combines different views on the role of market size as a determinant of drug prices:
 - monopsony power (often used to back proposals of joint procurement)
 - strategic interaction (Egan and Philipson, 2013)
- the two impacts may go in opposite directions
- relative importance dependent on market size: U-shape relationship
- implications of joint procurement:
 - impact on prices: depends on initial and final size of the market
 - impact on social welfare?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

THANK YOU!

P. Pertile, S. Gamba, M. Forster Strategic Interaction & Innovation

References

References I

- Anna Rita Bennato and Tommaso Valletti. Pharmaceutical innovation and parallel trade. *International Journal of Industrial Organization*, 33:83–92, 2014.
- M. Egan and T. J. Philipson. Internatonal health economics. NBER Working Paper Series. Working Paper No. 19280, 2013.
- Jaime Espín, Joan Rovira, Antoinette Calleja, Natasha Azzopardi-Muscat, Erica Richardson, Willy Palm, and Dimitra Panteli. How can voluntary cross-border collaboration in public procurement improve access to health technologies in europe. *Policy brief*, 21, 2016.
- Darren Filson. A Markov-perfect equilibrium model of the impacts of price controls on the performance of the pharmaceutical industry. *RAND Journal of Economics*, 43(1):110–138, 2012.
- Gene M Grossman and Edwin L-C Lai. Parallel imports and price controls. *The RAND Journal of Economics*, 39(2):378-402, 2008.
- OECD. Pharmaceutical pricing policies in a global market. Technical report, 2008. OECD Publishing.