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Advantages of panel data
• Panel data sets are typically larger than cross-sectional or time 

series data sets, and explanatory variables vary over two 
dimensions (individuals and time) rather than one, estimators 
based on panel data are quite often more accurate than from 
other sources. 

• Even with identical sample sizes, the use of a panel data set will 
often yield more efficient estimators than a series of 
independent cross-sections. 

• If one is interested in changes from one period to another, a 
panel will yield  more efficient estimators than  a series of cross-
sections.



Advantages of panel data
• Among the major advantages of panel data is the ability to 

model individual dynamics. 
• Many economic models suggest that current behaviour depends 

upon past behaviour (persistence, habit formation, partial 
adjustment, etc.), so in many cases we would like to estimate a 
dynamic model on an individual level. 

• The ability to do so is unique for panel data.



Autoregressive Panel Data Model (Dynamic)
• Consider the linear dynamic model with exogenous variables 

and a lagged dependent variable, that is
௧ݕ ൌ ௧ᇱݔ ߚ  ,௧ିଵݕߛ  ߙ  ߳௧	

where it is assumed that ߝ௧ is ܦܫܫ 0, ఢߪ .
• In the static model, we have seen arguments of consistency 

(robustness) and efficiency for choosing between a fixed or 
random effects treatment of the ߙ. 

• In a dynamic model the situation is substantially different, 
because ݕ,௧ିଵ will depend upon ߙ , irrespective of the way we 
treat ߙ . 



Autoregressive Panel Data Model (Dynamic)
• To illustrate the problems that this causes, we first consider the 

case where there are no exogenous variables included and the 
model reads

௧ݕ ൌ ௧ᇱݔ ߚ  ,௧ିଵݕߛ  ߙ  ߳௧, ߛ ൏ 1
• Assume that we have observations on ݕ௧for periods 

t = 0, 1,. ..,T . 
• The fixed effects estimator for γ is given by

ොிாߛ ൌ
∑ ∑ ௧ݕ െ ത்ݕ

௧ୀଵ ሺݕ,௧ିଵ െ ത,ିଵሻேݕ
ୀଵ 	

∑ ∑்௧ୀଵ ,௧ିଵݕ െ ത,ିଵேݕ
ୀଵ

ଶ 		

where ݕത ൌ ሺ1/ܶሻ∑ ௧்ݕ
௧ୀଵ and ݕത,ିଵ ൌ ሺ1/ܶሻ∑ ,௧ିଵ்ݕ

௧ୀଵ .



Autoregressive Panel Data Model (Dynamic)
• The fixed effects estimator for γ can also be written as:

ොிாߛ ൌ ߛ 	
ሺ1/ሺܰܶሻሻ∑ ∑ ߳௧ െ ்߳̅

௧ୀଵ ሺݕ,௧ିଵ െ ത,ିଵሻேݕ
ୀଵ 	

ሺ1/ሺܰܶሻሻ∑ ∑்௧ୀଵ ,௧ିଵݕ െ ത,ିଵேݕ
ୀଵ

ଶ 		

• This estimator, however, is biased and inconsistent for N →∞ 
and fixed T , as the last term in the right-hand side does not have 
expectation zero and does not converge to zero if N goes to 
infinity. In particular, it can be shown that (see Nickell, 1981):

ே→ஶ݈݉݅
ଵ
ே்
∑ ∑ ߳௧ െ ்߳̅

௧ୀଵ ሺݕ,௧ିଵ െ ത,ିଵሻேݕ
ୀଵ ് 0.

• Thus, for fixed T we have an inconsistent estimator. 



Autoregressive Panel Data Model (Dynamic)
• Note that this inconsistency is not caused by anything we 

assumed about the ߙs, as these are eliminated in estimation. 
• The problem is that the within transformed lagged dependent 

variable is correlated with the within transformed error. 
• If T → ∞, it converges to 0 so that the fixed effects estimator is 

consistent for γ if both T →∞ and N → ∞, because the former 
expression could be written as:

ே→ஶ݈݉݅
ଵ
ே்
∑ ∑ ߳௧ െ ்߳̅

௧ୀଵ ,௧ିଵݕ െ ത,ିଵݕ 	ே
ୀଵ = 

െ
ఢଶߪ

ܶଶ
ܶ െ 1 െ ߛܶ  ଶߛ

1 െ ߛ ଶ



Is the asymptotic bias for fixed T large enough 
to be worrisome?

• Yes! For finite T the bias can hardly be ignored. For example, 
if the true value of γ equals 0.5, it can easily be computed that 
(for N → ∞):

• plim ොிாߛ = −0.25 if T = 2
• plim ොிாߛ = −0.04 if T = 3 
• plim ොிாߛ = 0.33 if T = 10,

so even for moderate values of T the bias is substantial. 

• Which ways out?



Ways out

• Fortunately, there are relatively easy ways to avoid these biases.
• Start with a different transformation to eliminate the 

individual effects ߙ	, in particular we take first differences.
• This gives:

௧ݕ	 െ ,௧ିଵݕ 	ൌ 	ߛ	 ,௧ିଵݕ 	െ	ݕ,௧ିଶ 	 ߳௧ 	െ 	߳,௧ିଵ ,
	ݐ			 ൌ 	2, . . . , ܶ.

• If we estimate this by OLS we do not get a consistent estimator 
for γ because ݕ,௧ିଵ and ߳,௧ିଵ are, by definition, correlated, 
even if T → ∞. 

• However, ݕ,௧ିଶ is correlated with ݕ,௧ିଵ 	െ	ݕ,௧ିଶ but not 
with ߝ,௧ିଵ, unless ߝ௧	exhibits autocorrelation (which we 
excluded by assumption). 



Ways out

• This suggests an instrumental variables estimator for ߛ as

ොூߛ ൌ
∑ ∑ ,௧ିଶ்ݕ

௧ୀଵ ሺݕ,௧ െ ,௧ିଵሻேݕ
ୀଵ 	

∑ ∑ ,௧ିଶ்ݕ
௧ୀଵ ,௧ିଵݕ െ ,௧ିଶேݕ

ୀଵ

• A necessary condition for consistency of this estimator is that

݈݉݅
1

ܰ ܶ െ 1   ߳௧ െ ߳,௧ିଵ
்

௧ୀଶ
,௧ିଶݕ ൌ 0

ே

ୀଵ
for either T , or N , or both going to infinity.
• This estimator is one of the estimators proposed by Anderson 

and Hsiao (1981). They also proposed an alternative, where 
,௧ିଶݕ 	െ	ݕ,௧ିଷ is used as an instrument.

• A method of moments approach can unify the estimators and 
eliminate the disadvantages of reduced sample sizes.



Ways out

• It is well known that imposing more moment conditions 
increases the efficiency of the estimators (provided the 
additional conditions are valid, of course). Arellano and Bond 
(1991) suggest that the list of instruments can be extended by 
exploiting additional moment conditions and letting their 
number vary with t .

• The general GMM approach does not impose that ߳௧ is i.i.d. 
over individuals and time

• Under weak regularity conditions, the GMM estimator for γ is 
asymptotically normal for N →∞ and fixed T .

• Alvarez and Arellano (2003) show that, in general, the GMM 
estimator is also consistent when both N and T tend to infinity 
despite the fact that the number of moment conditions tends to 
infinity with the sample size. For large T, however, the GMM 
estimator will be close to the fixed effects estimator..



Dynamic Models with Exogenous Variables 

• If the model also contains exogenous variables, we have
௧ݕ ൌ ௧ᇱݔ ߚ  ,௧ିଵݕߛ  ߙ  ߳௧

• which can also be estimated by the generalized instrumental 
variables or GMM approach. Depending upon the assumptions 
made about ݔ௧ , different sets of additional instruments can be 
constructed.

• Arellano and Bover (1995) provide a framework to integrate the 
above approach with the instrumental variables estimators of 
Hausman and Taylor (1981). Most importantly, they discuss 
how information in levels can also be exploited in estimation.

• That is, in addition to the moment conditions presented above, 
it is also possible to exploit the presence of valid instruments for 
the levels equation or its average over time (the between 
regression). 



Limited dependent variable (LDV) models

• In practical applications one often has to cope with phenomena 
that are of a discrete or mixed discrete continuous nature.
• E.g., one could be interested in explaining whether consumers are 

satisfied for the water supply service (yes or no), or whether 
consumers think that the price of gas is very low, fairly accessible, 
fairly expensive or excessive (ordered discrete). 

• For this type of variables LDV models are often more 
appropriate. Attention should be paid to the estimation and 
interpretation of their parameters.

• Often the problems analyzed with this type of model are of a 
micro-economic nature, thus requiring data on individuals, 
households or firms. 

• To stress this, we shall index all variables by i, running from 1 
to sample size N 



Binary Choice Models: linear regressions

• Suppose we want to explain whether a family have access to 
gas supply. Let the sole explanatory variable be the family 
income. 

• We have data on N families (i = 1,.. .,N), with observations on 
their income, ݔଶ, and whether or not they have access to gas 
services. This latter element is described by the binary variable 
, defined asݕ
• ݕ ൌ 	1 if family i has gas supply access
• ݕ ൌ 	0 if family i does not have gas supply access

• Suppose we would use a regression model to explain ݕ		from 
ଶݔ and an intercept term (ݔଵ	≡ 1). 

• This linear model would be given by: 
• ݕ ൌ ଵߚ  ଶݔଶߚ  ߳ ൌ ߚᇱݔ  ߳, where ݔ ’(ଶݔ ,ଵݔ) =



Binary Choice Models: linear regressions
• It  seems  reasonable  to  make  the  standard  assumption  that
ሽ	ݔ|	ߝሼܧ ൌ 	0 such that ܧሼݕ	|ݔሽ ൌ 	  .ߚ′ݔ

• This implies that
ܧ 	ݕ ݔ ൌ 	1. ܲ	 ݕ ൌ 1 ݔ  	0. ܲ	 ݕ ൌ 0 ݔ

ൌ 	ܲ	ሼݕ ൌ ሽݔ|1	 ൌ .ߚ′ݔ
• The linear model implies that ݔ′ߚ is a probability and should 

therefore lie between 0 and 1. This is only possible if the ݔ
values are bounded and if certain restrictions on ߚ are satisfied. 



Binary Choice Models: linear regressions
• In addition, the error term has a highly non-normal distribution 

and suffers from heteroskedasticity. Because ݕ has only two 
possible outcomes (0 or 1), the error term, for a given value of 
 ., has two possible outcomes as wellݔ

• In particular, the distribution of ߝ	can be summarized as
ܲ	ሼߝ ൌ 	െݔ′ݔ|ߚሽ ൌ ܲ	 ݕ ൌ 0 ݔ = 1	 െ ߚᇱݔ
ܲ	 ߝ ൌ 1 െ ߚᇱݔ ݔ ൌ ܲ	 ݕ ൌ 1 ݔ = ߚᇱݔ

• Hence, the variance of the error term is not constant but 
dependent upon the explanatory variables according to 
ܸ	ሼߝ	|ݔሽ ൌ 	ሺ1	ߚᇱݔ െ  .ሻߚᇱݔ
• Note that the error variance also depends upon the model 

parameters ߚ.



Binary Choice Models: logit, probit

• To overcome the problems with the linear model, there exists a 
class of binary choice models (or univariate dichotomous 
models), designed to model the ‘choice’ between two discrete 
alternatives. 

• These models essentially describe the probability that 
ݕ ൌ 1directly, although they are often derived from an 
underlying latent variable model. 

• In general, we have
ܲ	ሼݕ ൌ ሽ	ݔ|1	 ൌ ܩ	 ,	ݔ ߚ for some function ܩ . .

• Clearly, the function ܩሺ. ሻ	should take on values in the interval 
ሾ0, 1ሿ only. 

• Usually, one restricts attention to functions of the form 
ܩ ,	ݔ ߚ ൌ 	ܨ	 ߚᇱݔ .	
• As ܨ	ሺ. ሻ also has to be between 0 and 1, it seems natural to choose 
ܨ to be some distribution function. 



Binary Choice Models: logit, probit
• Common choices are the standard normal distribution

function and the standard logistic function

• ܨ ݓ ൌ Φ ݓ ൌ  ଵ
ଶగ	

exp െ ଵ
ଶ
ଶݐ ݐ݀ → ௪݈݁݀݉	ݐܾ݅ݎܲ

ିஶ

• ܨ ݓ ൌ L(w) = ೢ

ଵାೢ
 → Logit model

• Both a standard normal and a standard logistic random variable 
have an expectation of zero, while the latter has a variance of 
௫మ

ଷ
	instead of 1.

• A third choice is the uniform over the interval [0,1], i.e. with 
distribution:
• F(w)=0, w<0;
• ܨ ݓ ൌ ,ݓ 0  ݖ  1	
• ܨ ݓ ൌ ݓ,1  1; → Linear probability model



Binary Choice Models: logit, probit

• Apart from their signs, the coefficients in these binary choice 
models are not easy to interpret directly. 

• One way to interpret the parameters (and to ease comparison 
across different models) is to consider the partial derivative 
(marginal effects) of the probability that ݕ equals one with 
respect to a continuous explanatory variable, ݔ	, say. For the 
three models above, we obtain:

• డሺ௫
ᇲఉሻ	

డ௫ೖ
ൌ ߶ ߚᇱݔ ߚ

• డሺ௫
ᇲఉሻ	

డ௫ೖ
ൌ ೣ

ᇲഁ

ଵାೣ
ᇲഁ

మ ߚ

• డ௫
ᇲఉ	

డ௫ೖ
ൌ ;ߚ ሺݎ	0ሻ



LDV Models: underlying latent model

• It is possible (but not necessary) to derive a binary  choice 
model from underlying behavioural assumptions. 
• This leads to a latent variable representation of the model, which 

is in common use even when such behavioural assumptions are not 
made. 

• Let us look at the decision of a family to have access to gas 
supply. The utility difference between having a gas supply and 
not having one depends upon the income earned but also on 
other personal and household characteristics, like the 
householder age and education, the location of the household, 
etc. 

• Thus, for each person ݅ we can write the utility difference 
between having gas supply and not having one as a function of 
observed characteristics, ݔ say, and unobserved characteristics, 
.ߝ



LDV Models: underlying latent model

• Assuming a linear additive relationship we obtain for the 
utility difference, denoted	ݕ∗, which is referred to as a latent 
variable (indicated with an asterisk).

• Our assumption is that an individual chooses to have access to 
gas if the utility difference exceeds a certain threshold level, 
which can be set to zero without loss of generality.

• Consequently, we observe ݕ ൌ 1	(access) if and only if ݕ∗ 
0	and ݕ ൌ 0 (no access) otherwise.

• Thus we have:
• ܲሺݕൌ 1ሻ ൌ ܲ ∗ݕ  0 ൌ ܲ ߚᇱݔ  ߳  0 ൌ ܲ െ߳  ߚᇱݔ ൌ
ܨ ߚᇱݔ , where ܨ denotes the distribution function of െ߳.

• As the scale of utility is not identified, a normalization on the 
distribution of ߳ is required. Usually this means that its 
variance is fixed at a given value.



Multi-response models

• In many applications, the number of alternatives that can be 
chosen is larger than two. For example, we can distinguish the 
choice between high satisfaction, mild satisfaction, mild 
dissatisfaction, high dissatisfaction of consumers as for the 
quality of gas supply services. 

• Some quantitative variables can only be observed to lie in 
certain ranges. This may be because questionnaire respondents 
are unwilling to give precise answers, or are unable to do so, 
perhaps because of conceptual difficulties in answering the 
question. 

• An important goal is to describe these probabilities with a 
limited number of unknown parameters and in a logically 
consistent way. For example, probabilities should lie between 0 
and 1 and, over all alternatives, add up to one.



Multi-response models

• An important distinction exists between ordered response 
models and unordered models. 

• An  ordered  response  model  is  generally  more  
parsimonious but  can  only be applied if there exists a logical  
ordering  of  the  alternatives.  
• The  reason  is  that there is assumed to exist one underlying 

latent variable that drives the choice between the alternatives. 
In other words, the results will be sensitive to the ordering
of the alternatives, so this ordering should make sense. 

• Unordered models are not sensitive to the way in which the 
alternatives are numbered. In many cases, they can be based 
upon the assumption that each alternative has a random utility 
level and that individuals choose the alternative that yields 
highest utility.



Multi-response models: ordered response 
models

• Let us consider the choice between M alternatives (j=1…M). If 
there is a logical ordering in these alternatives (for example, no 
car, 1 car, more than one car), a so-called ordered response 
model can be used. This model is also based on one underlying 
latent variable but with a different match from the latent 
variable, ݕ∗, to the observed one (ݕ ൌ 	1, 2, …  Usually, one .(ܯ,
says that
• ∗ݕ ൌ ߚᇱݔ  ߳
• ݕ ൌ ݆ if ߛିଵ ൏ ∗ݕ  ߛ for unknown ߛs with ߛ ൌ െ∞, ߛଵ 	ൌ 	0

and ߛெ ൌ ∞. 
• Consequently, the probability that alternative ݆ is chosen is the 

probability that the latent variable ݕ∗	is between two boundaries 
ିଵߛ and ߛ. Assuming that ߳ is i.i.d. standard normal results in 
the ordered probit model. The logistic distribution gives the 
ordered logit model. 

• For ܯ	 ൌ 	2 we are back at the binary choice model.


