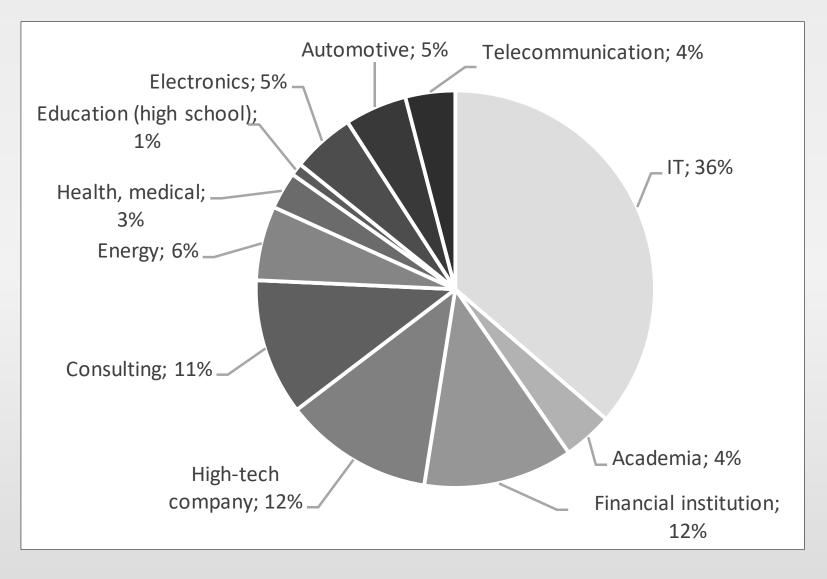

Lezione 3.6 Impatto sul capitale umano

Per dettagli consultare il capitolo 4 di «Investing in Science»


Benefits on employees: Human capital formation

Human capital formation benefits (H) are valued as increased earnings (I) gained by RI's students and former employees (z), since the moment (φ) they leave the project, against counterfactual scenario.

APPROACH	DATA REQUIRED								
	• Number of incoming young researchers by category (e.g. Master								
	students, PhD students, fellows, postdoctoral researchers)								
	• Probability distribution of different categories of students finding a job in								
Incremental lifelong	identified possible sectors								
salary	Median gross annual salary for each of the identified professional sectors								
	• Appropriate (e.g. logarithmic) function to estimate the continuous salary								
	curve for each professional sector								
	'Premium' salary								

The Effects of Research Infrastructures on Human Capital

- Students and Postdoctoral Researchers
- Respondents of the CERN Alumni survey (2018), by current employment in private sector

- Out of the 2,859 respondents, many currently work in the private sector, specifically in engineering, consulting, information technology (IT), and other domains
- The respondents declared that they had acquired a variety of skills at CERN that they consider to be important in their current jobs (programming, working in international groups, data analysis, logical thinking, and communication)
- The more time they spent at CERN, the higher their satisfaction was with their current position and the larger and more diverse skills they acquired

Signaling and Human Capital Effects

$$\log w = \log w_0 + \gamma_1 NH + \gamma_2 EXP + \gamma_3 EXP^2 + e$$

 γ_1 , γ_2 , γ_3 : return parameters to be estimated

- e: an error term
- w: earnings
- *w*₀: level of earnings of an individual with no education or experience (the intercept of the function)
- NH: Number of years of schooling
- EXP: Number of years of potential labor market
- experience

Average return on tertiary education (%)

Country	Harmon, Oosterbeek, and Walker (2003), 1995	Blöndal, Field, and Girouard (2002), 1999–2000	Boarini and Strauss (2007), 2001
Austria	6.8	_	6.4
Denmark	5.6	11.3	9.1
Finland	8.7	_	7.8
France	7.8	14.8	9.0
Germany	8.8	8.7	6.3
Ireland	11.3	_	13.1
Italy	6.9	6.5	5.1
Netherlands	5.7	12.3	6.2
Portugal	9.7	_	12.2
Spain	7.8	_	5.7
United Kingdom	10.4	16.1	12.0

Expected present value of human capital

- The expected present value of human capital accumulation benefits, E(HC), can be defined as the sum of the expected increasing earnings, $E(Dw_{zt})$, gained by the RI students and young scientists and commonly indexed by z, from the moment (at time φ) they leave the RI
- *st* is the discount factor at year *t*

$$\mathbb{E}(HC) = \sum_{z=1}^{Z} \sum_{t=\varphi}^{T} s_t \cdot \mathbb{E}(Dw_{zt})$$

Experiential Learning in High-Energy Physics (1)

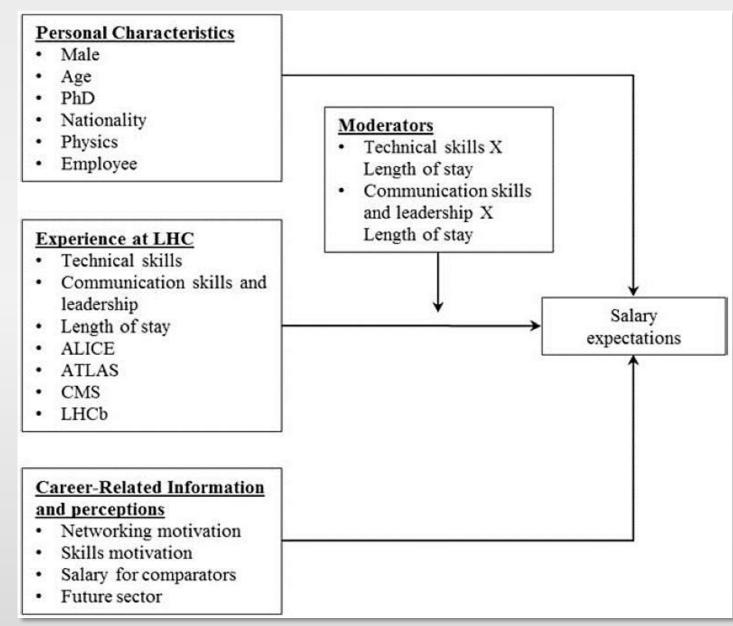
 expwz: dependent variable, measuring the range of salary expectations and taking integer values from 1 to F

exact but
unobserved
dependent variable
$$expw_z = X_z \delta + \varepsilon_z$$

- X_z is a vector of independent variables, aimed at explaining the range of salary expectations
- δ is the vector of regression coefficients we wish to estimate
- ϵ_z is the random disturbance term that follows a logistic distribution

Experiential Learning in High-Energy Physics (2)

• *expwz* rules:


$$\begin{aligned} expw_z &= 1 \text{ if } expw_z^* \leq \tau_1 \\ expw_z &= f \text{ if } \tau_{j-1} < expw_z^* \leq \tau_j \text{ } f = 2, \dots, F-1, \\ expw_z &= F \text{ if } \tau_{J-1} < expw_z^* < \infty \end{aligned}$$

- where τ 1 ≤τ 2 ≤...≤τ f −1 are unknown thresholds (cut points) to be estimated.
- The conditional distribution of expwz, given Xz, is expressed by:

$$\Pr(expw_z = f | X_z) = \Lambda(\tau_f - X_z\beta) - \Lambda(\tau_{f-1} - X_z\delta)$$

• where Λ (.) denotes the logistic cumulative distribution function

Conceptual model of salary expectations

Ordered logistic estimates of end-career salary expectation

	(1)		(2)		(3)		(4)		(5)	
Variables	coef	se	coef	se	coef	se	coef	se	coef	se
Experience at LHC										
Technical skills	0.103*	(0.062)			0.110^{*}	(0.061)	0.004	(0.145)	0.135	(0.134)
Length of stay			0.009*	(0.005)	0.009*	(0.005)	0.011**	(0.005)	0.017**	(0.007)
Technical skills X							0.004**	(0.002)	0.004**	(0.002)
Length of stay										
Personal Characteris	stics									
Employee	0.814***	(0.282)	0.455	(0.346)	0.493	(0.352)	0.500	(0.354)	0.444	(0.409)
Male									0.946***	(0.349)
Age									-0.035	(0.043)
PhD									2.653***	(0.924)
Physics									-0.294	(0.449)
Career-related infor	mation									
Networking									-0.098	(0.157)
motivation										
Skill motivation									0.272	(0.239)
Salary for									0.342***	(0.130)
comparators										
Future sector									0.495***	(0.155)
Nationality-specific	Yes		Yes		Yes		Yes		Yes	
effects										
Experiments-specific	Yes		Yes		Yes		Yes		Yes	
effects										
Interview-specific	Yes		Yes		Yes		Yes		Yes	
effects										
Observations	318		318		318		318		318	
McFadden's R2	0.036		0.035		0.043		0.050		0.159	
Log Likelihood	-254.3		-240.8		-237.4		-235.9		-172.8	
Likelihood ratio test	16.87		17.99		19.17		22.75		52.20	
Proportional odds hp	0.291		0.276		0.227		0.205		0.182	
test (p-value)										